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Abstract 

Significant technical development over the last years has lately been showing 

more and more promise of making the vision of smart environments come true. 

The role of future smart environments lies in proactive interaction. Prediction 

of user’s actions plays a vital role in such interaction. This paper presents 

a method based on artificial neural networks designed to accommodate the 

problem of person movement prediction. The paper explores the importance 

of dynamic training in prediction of nonstationary time series. An approach 

to dynamic training, based on the so-called on-the-fly training, is presented. 

 

 

1. INTRODUCTION 
 

Prediction of user's actions is likely to play a vital role in future smart environments, 

be these smart homes, smart offices, smart workplaces or other environments. This is due to the 

fact that prediction of user's actions most definitely represents the cornerstone of proactive 

interaction. Considerable effort has so far been invested into time series prediction in general 

as well as into prediction of person movement specifically. 

Among the artificial intelligence methods often being applied to this problem are artificial 

neural networks (ANNs). These have now been shown to be able to approach the problem of 

time series prediction. However, should the time series be nonstationary, the classical training 

approaches that do not provide for continuous adaptation of the ANN (static training) will 

usually exhibit unreasonable prediction error and thus fail to provide a viable solution for the 

problem. Thus, dynamic learning methods are called for in order to provide the ANN with the 

ability to adapt online and learn from new data once they become available. This paper 

discusses some of the existing approaches and presents an approach to dynamic learning based 

on the notion of the so-called on-the-fly training. 
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2.  THE VISION OF UBIQUITOUS COMPUTING AND SMART 

ENVIRONMENTS 
 

Ubiquitous computing is a post-desktop model of human-machine interaction, which 

expects computing to be integrated into everyday objects. This model considers traditional 

desktop model to be superseded by interaction with devices without even being aware of their 

functioning. It can also be characterized by the significant change of perspective – we are now 

striving to rebuild the machine interfaces in such way that they operate in the environment 

native to humans, instead of forcing humans to change their way of thinking, or use complex 

interfaces in order to interact with them. Ubiquitous computing is closely related and 

sometimes overlapping with pervasive computing, ambient intelligence, or the Internet 

of Things. However, the Internet of Things is much more physically oriented than pervasive 

and ubiquitous computing and ambient intelligence, which are more abstract paradigms. 

Smart environment is a technological concept – Mark Weiser sees ubiquitous computing 

and the smart environment as “a physical world that is richly and invisibly interwoven with 

sensors, actuators, displays, and computational elements, embedded seamlessly in the everyday 

objects of our lives, and connected through a continuous network” [1]. The smart environment 

is a small world, where different kinds of smart devices are continuously working to make 

inhabitants' lives more comfortable [2]. Smart environment is sensing, predicting, making 

decisions and acting proactively, in order to improve user comfort and automate repetitive 

tasks. Proactive interaction is an essential part of the vision of future smart environments. 

 

 

3. PERSON MOVEMENT PREDICTION 
 

The ability to recognize and learn patterns in user behaviour forms the base of proactive 

interaction, and especially of smart environments like intelligent houses, offices, industrial 

buildings, etc. In general, human machine interaction in smart environment depends on their 

current and near-future location. Successful movement prediction and other related types 

of prediction can save energy and improve user comfort by saving their time. People waste 

a lot of time by routine operations such as control of heating, light, ventilation, various other 

devices, etc. The automation of routine operations is the current trend and it provides a way 

to save a lot of time and energy. 

The need to save more time and to use our time in an increasingly productive way 

is nowadays perceived with extraordinary clarity. As for energy savings, these may arise from 

more optimal control – experiments have proved that prediction of user actions can 

significantly lower energy consumption [3]. 

Another important application of person movement prediction and other related 

predictions presents itself in care for elderly people. According to demographic data, 

population is ageing fast and the number of elderly people increases all over the world. 

Population ageing is a great challenge for humanity, and especially so for developed countries. 

Home care systems may represent one of the viable solutions as it may be able to substitute for 

the work of a nurse to a certain extent in the future. A home care system able to recognize and 

learn patterns in user's behaviour would be able to recognize unusual and potentially dangerous 

situations and call for help. 
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3.1 To what extent it is possible to predict movement 

 

The assumption underlying all movement prediction systems is that human behaviour and 

particularly human movement in the smart environment can in principle be predicted. It is also 

of much importance that prediction of human behaviour, especially of movement, has been 

shown to lead to energy and time savings. The analysis of inhabitant’s daily lifestyle will tend 

to show identifiable patterns: these can be learned and therefore actions can, to a certain extent, 

be predicted. This, in turn, leads to the assumption that the inhabitant’s mobility is a piecewise 

stationary ergodic stochastic process, as hypothesized by Bhattacharya [4], whose work 

concerns tracking mobile users in a wireless cellular network. This research indicates that 

in spite of the fact, that there exists a number of possible routes in the house, the inhabitant will 

tend to have their own routine, and their own routes.  

What is more, the underlying hypothesis that human behaviour and human movement can 

be predicted has to date been proven by many experiments, for example by smart house 

projects [3], [5] or smart office projects [6]. 

 

3.2 How to track inhabitants' movement 

 

There exists a lot of technical solutions for mobility tracking, which can, in principle, 

be divide into two main categories. The first one utilizes recognition based on physical 

characteristics. The second one makes use of recognition based on user's possession 

of an object – for example an identification chip. 

In large buildings with a lot of people, like hospitals, it will usually be better to use 

identification by the way of possession. An example of such a solution can be found 

in Priyantha's work: “The Cricket Indoor Location System” [7] developed at the Massachusetts 

Institute of Technology. There is a wide range of applications for this kind of a system, 

navigation of robotic devices and indoor navigation being among them. 

In smaller buildings with no changing inhabitants it may be better to use a sensor network 

and cameras. An example of using cameras can be found in [8], a work coming from 

Microsoft. An example of using sensors, on the other hand, can be found in [9], which presents 

an approach to tracking inhabitants' movement using pressure sensors in the floor. What 

is more, current technologies can even recognize particular activities by use of a great numbers 

of sensors, as shown in [10] and [11]. A major concern when using physical recognition 

is privacy. This is especially an issue when using cameras. 

 

3.3 An overview of existing solutions for movement prediction 

 

There exist a number of approaches and methods based on artificial intelligence and 

mathematical methods, which have to date been employed in recognition of patterns in human 

behaviour in general as well as in the task of movement prediction itself. Among the most 

obvious candidates are Markov chains, Bayesian networks, and neural networks. This paper 

presents and ANN-based approach. Some of the existing ANN-based approaches will 

be discussed in a separate section. Concerning the other approaches, let us only mention 

prediction by partial matching (PPM), which comes from the theory of data compression. More 

specifically, PPM finds its base in Markov models theory, and especially in dynamic Markov 

compression. 

PPM has successfully been used to predict movement in a smart office building project 

[12]. An application of PPM to this task has been demonstrated in MavHome project designed 



36 

at university of Texas at Arlington as well [3]. MavHome uses the LeZi-Update algorithm. 

LeZi is based on information theory and constitutes a framework for location-aware resource 

management. More specifically, the concept of the typical set and the asymptotic equipartition 

property are utilized to find the inhabitant’s most likely routes with some degree of accuracy 

and predict near-future movement and activities in an indoor environment. 
 

3.4 Single-inhabitant vs. Multi-inhabitant movement prediction 
 

There are some considerable differences between single and multiple inhabitant 

movement prediction. More people sharing the same smart environment may interact with the 

environment and with each other, and what is more, conflicting situations may arise. Optimal 

movement prediction for multiple inhabitant environments is proved to be an NP-hard 

problem. However, there are some methods that are able to deal with it to a certain extent. Roy 

uses game theory – cooperative and non-cooperative – in his dissertation thesis to approach the 

problem [13].  

Multi-inhabitant movement prediction is more challenging in two ways. Firstly it is the 

above mentioned interaction between inhabitants. Secondly, it is very difficult to distinguish 

motion of every one inhabitant. In other words, if there is just one person in the environment, a 

simple sensing of motion is enough. However, if there are multiple inhabitants, it becomes 

much more difficult to track motion of inhabitant 1 and distinguish it from that of inhabitant 2. 

Inhabitant recognition would require use of cameras or id chips. It is obvious though that 

neither cameras nor the id chips can be counted among the most popular of solutions. The other 

way is to only sense motion and not recognize inhabitants at all. This of course has to be paid 

for by sacrificing some prediction accuracy. This paper focuses on multi-inhabitant movement 

prediction in such environments where recognition of inhabitants is not available or desirable. 
 

 

4. THE SIMULATION MODEL 
 

In our case study, the smart environment is represented by a house shown in Fig. 1. 

We divide the house into 14 zones: every room is represented by a separate zone. Every zone 

is assigned a unique number from 141,2,..., . Movement of a person in such environment can 

then be expressed by a sequence of numeric ids such as 1, 2, 3, 6, 10, 12… 

 

Fig. 1. Structure of the simulated environment 
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There are two independent inhabitants (agents) living in our simulated environment. 

The simulation runs in discrete time steps and does not take duration of being in various rooms 

into account. The name of the first software agent is Adam. Adam is 50, lives alone in the 

house and works at an office. The name of the second agent is Jane. Jane is 20 and she 

is Adam's daughter. Jane studies in another city, thus she occupies the smart environment only 

at weekends. We want to explore the ability of the neural network to adapt to such changes. 

The simulation of behaviour for Adam and Jane is based on a combination of predefined 

scenarios and random decision making based on empirical and uniform probability 

distributions. Empirical probability distribution arranges that Adam and Jane visit some rooms 

(such as their bedrooms, toilet, ...) more often than other (like other bedrooms and kitchen). 

These probabilities are different on working days and at weekends. We use the uniform 

distribution of probability in situations with non-predicated behaviour, which accounts 

for approximately 5-10% of simulation time. 

Adam acts according to predefined scenarios in the morning; we have several different 

scenarios for working days and for weekends. Morning scenarios are based on the assumption 

that morning behaviour is mostly routine, and is therefore the most easy to predict. Other 

scenarios include: after work scenario; after beer scenario (when Adam comes home after 

Friday's night beer); after weekend scenario – when Adam comes home from a weekend trip. 

As for night scenarios, every fifth night Adam wakes up between 2 a.m. and 4 a.m. and goes 

to the toilet with 90% probability, to the kitchen with 8% probability or to the front door with 

2% probability. Jane’s predefined scenarios are similar. 

 

 

5. ARTIFICIAL NEURAL NETWORKS 
 

Let us now provide some fundamentals concerning the theory of artificial neural 

networks. We will, for the sake of brevity, forebear from giving a more detailed overview 

of the basic theory, such as is to be found in [14] and other works. We will instead confine 

ourselves to discussing those features of artificial neural networks (ANNs) that are most 

closely related to the problem at hand. 

 

5.1 Architecture of the artificial neural network 

 

The way in which artificial neurons in an ANN are connected is often being referred to 

as the architecture of the ANN. There are several special types of architectures, most notably:

● Layered architecture; ● Non-layered architecture.

  

Fig. 2. A feed-forward neural network 

 

 

Fig. 3. An example of a recurrent ANN 
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When an ANN has the layered architecture, several layers of artificial neurons can 

be identified within its structure and, typically, only the adjacent layers are interconnected. Fig. 

2 shows an example of such ANN. In the case of non-layered architecture, obviously, no layers 

of neurons can be discerned in the ANN. 

There is another important distinction, concerning the architecture, this one being related 

to the way in which signals propagate through the network, namely whether there is any 

recurrence or not. With regard to this, we distinguish between: 

● Feed-forward networks; ● Recurrent networks.

An example of a feed-forward network is shown in Fig. 2, an example of a recurrent ANN  

in Fig. 3. Implications of using recurrent or feed-forward networks in forecasting will be 

discussed in more detail shortly. 

 

5.2 Learning methods 

 

There is a multitude of methods designed to accommodate the learning problem in the 

theory of ANNs. When it comes to supervised learning, there is no doubt that the 

backpropagation algorithm is the best known approach. It is based on gradient descent and 

available in several flavours – most notably the batch and the incremental version. Several 

authors have strived to investigate which of these two versions is the more efficient one, e.g. [15]. 

There is a variety of other methods, some of which, however, are closely related, or even 

built atop backpropagation. An instance of such is the Rprop algorithm [16] (resilient 

backpropagation), which is, as the matter of fact, used to implement training in this work (or, to 

be precise, one of its enhanced versions is: the iRprop+ [17] as implemented in the FANN 

library). 

ANNs can also be built and trained using genetic algorithms or similar evolutionary 

techniques. There are several works that discuss this topic and there is a multitude of approaches 

with different ways of representing ANNs genome. These methods generally tend to be more 

demanding computationally. However, they may prove to be useful in tasks where gradient 

descent is of limited use due to its tendency of getting trapped in local extremes [18]. 

 

 

6. ON USE OF ANNS IN FORECASTING 
 

There is a number of papers that investigate applications of artificial neural networks 

to forecasting, or, if you like, to time series prediction. Several points are to be addressed when 

investigating such applications, including: 

● Selecting an appropriate architecture of the ANN; 

● Finding an appropriate data representation; 

● Specifying a way in which the data is to be coded into inputs for artificial neurons. 

 

6.1 Architecture of the artificial neural network 

 

As mentioned hereinbefore, regarding the way in which signals are allowed to propagate 

through the network, there are two distinct types of architecture that an ANN may possess – the 

feed-forward architecture and the recurrent architecture. 

Recurrent networks would seem to be especially well-suited to the task at hand 
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as it is quite obvious that knowledge of several previous values (states) will generally 

be required in order to determine the forecast. There is a number of works that utilize this 

approach. It should be noted, however, that recurrent networks tend to be significantly more 

difficult to train than their more simplistic feed-forward counterparts. For this reason many 

of these works use various heuristic learning methods. 

To name just a few, in [19] a recurrent neural network is applied to forecasting stock 

markets. The approach is based on some more complex preprocessing based on wavelet 

transforms. Learning is based on the artificial bee colony algorithm. Paper [20], on the other 

hand, optimizes the recurrent neural network through the use of genetic algorithms. 

However, when investigating forecasting tasks, we are by no means confined to use 

of recurrent neural networks. If we are willing to provide for time delay of input signals 

explicitly, feed-forward networks represent a viable alternative. In fact, according to [21], 

of these two, this is the more widely used approach. Work [22] investigates the problem of time 

series forecasting using feed-forward networks and it also gives an overview of existing work 

up to that point. Another example, applying the feed-forward artificial neural network 

to movement prediction is presented in [5]. This work also investigates prediction of the 

expected occupancy patterns in the house over the next few hours, the expected hot water 

usage, and the likelihood that a zone will be entered in the next few seconds. 

The data is fed to the ANN in the following fashion: let kf  be a time series we are trying to 

predict (and k  be the discrete time step). Then, if we leave coding of the values out 

of consideration for the time being, the following is to hold for data fed into the ANN at point k : 

nkf,,kf,kf=kX ...21 , (1) 

where n  is the number of previous values of kf  we present to the network, that is, the order 

of the forecaster (or, if you like, the size of its memory). When specifying the value of n , one 

should therefore be reasonably certain that the system producing the outputs is of order equal 

or smaller than n . Should this condition not be satisfied, the ANN-based forecaster cannot 

be expected to provide us with accurate predictions. 

In most practical applications the ANNs have a single hidden layer in addition to the input 

and output layer. As to the output layer, there would typically be (again not considering coding) 

a single neuron for an ANN that is to forecast one time step ahead. For ANNs supposed 

to provide predictions of m  future values, there are several options: 

● Train an ANN with a single output neuron to forecast a single future value kf . 

Then use this forecast to compute the forecast for the next time step 1+kf . This 

kind of forecasting is known as iterative forecasting [22]. 

● Train an ANN with m  output neurons to predict m  future values. Such approach 

is known as direct forecasting [22]. 

● Use a combination of both – iterative and direct forecasting. 

 

6.2 Data representation and coding 

 

Several notes concerning the input data have been made in the previous section. If we use 

a feed-forward network to forecast time series, we are bound to present the network with n  

previous values of the time series. Formula (1) implies that such ANN-based forecaster will 
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possess some sort of a container, effectively a FIFO buffer of size n  and feed its elements 

to the input layer of the network. 

However, this notion is not quite correct as we have chosen to ignore the issue of coding. 

Let us now consider this issue in more detail. Many works concerning ANN-based forecasting 

deal with continuous data such as currency exchange rates, river flow, rainfall, financial and 

demographic indicators, etc. For such applications what we have said so far is quite accurate. 

The only additional measure that we would probably have to take is to scale the numeric values 

appropriately – especially when using an activation function such as the sigmoid function: 

so as to avoid saturation [22]. 

It should be obvious that the problem of person movement prediction is not of the same 

nature – the observation, that is, the numeric id of the room into which the person moves next, 

is discrete. There is a finite number of rooms, each with its separate and unique numeric code. 

There are several approaches one might take when devising a representation fit for such 

observations: 

● Feed the numeric code, such as it is, into a single artificial neuron (in the input layer); 

● Have a separate input (and output) neuron for every room times every time step; 

● Convert the numeric code into its binary form and assign one neuron to every bit of 

the resulting binary code. 

The first option, as we can see, is the very same as used for forecasting of continuous 

numeric variables. Such approach has some significant downsides, perhaps the most important 

of which is the fact that the ANN will not generalize correctly – when we present it with 

an unknown input similar to both – such input as produces prediction of room 1 as well as such 

as produces prediction of room 8, we may reasonably expect that the output will be close 

to number 4, or some similar result in between 1 and 8. It is, in any case, improbable that it will 

be close enough to either 1 or 8 for the result to be evaluated correctly. Thus, it seems that such 

representation runs a risk of turning the one thing that ANNs are singularly good at – providing 

generalization capabilities – into its disadvantage. 

If we were to select the second option, we would provide the ANN with n.r  input 

neurons, where r  is the number of rooms. Input patterns would then be generated in such way 

that a given room would be represented by setting the input of its neuron to 1 while setting the 

inputs of all the other input neurons to 0. Output patterns would be generated in a similar 

fashion. This approach is the least likely to induce the problem described in the previous 

paragraph. However, it is rather impractical – size of the network increases rapidly with adding 

rooms and increasing the order of the forecaster. 

The third approach is the one we have actually selected as it provides something 

of a middle ground between the other two methods. 

 

 

7. DYNAMIC TRAINING ON A FIXED-SIZE TRAINING DATA SET 
 

This section will provide a brief summary, or rather simply a list of the building blocks 

employed in our system. As mentioned earlier, our approach is based on a feed-forward ANN. 

We use static and dynamic training (the difference being described in the next section) both 

of which make use of the iRprop+ training mechanism mentioned in section . As to coding and 

representation, we have already mentioned that we transform the numeric code of the room 

into its binary form and feed the binary digits to the input neurons. 
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7.1 Static and dynamic training 

 

Among the problems we are facing when trying to predict person movement is the fact 

that such time series will more often than not prove to be nonstationary. That is, the series are 

not only random for a large part, but even their statistical properties may change over time – 

users may change their habits, or some other factors that are not explicitly tracked may 

be at work like change of seasons, weather, etc. 

In the case that the time series is nonstationary, it obviously does not suffice to select 

a portion of the collected data on which the ANN is then trained and evaluate its accuracy on 

the remaining data afterwards, as is the common practice. Such approach, known as pre-

training or static training [6], although appropriate for stationary systems, will not work very 

well in the non-stationary case. Parameters acquired through learning will – with gradually 

changing statistical properties – quickly become outdated. 

If, on the other hand, the parameters of the ANN are continually being adapted using new 

observations, such approaches are known as dynamic training. There is a number of ways 

to actually perform dynamic learning, instances of which are to be presented hereinafter. In any 

case, it should now be obvious that there is a necessity to employ dynamic learning, should 

it be implemented in one way or another. 

In a previous section we have mentioned some of the basic training methods, all of which 

are conventionally used to implement static learning. Let us now provide an instance 

of a dynamic learning method. One such method is employed by Vintan et al. [6]. Incidentally, 

their work focuses on the very same problem this paper discusses. Their dynamic learning 

mechanism differs from our approach though. Once they've acquired the prediction by running 

the ANN forward, they determine whether the prediction is correct. If that is the case, 

a backward step is made. If, on the other hand, the prediction is incorrect, the backward step 

is applied until the prediction is correct and one more time after that [6]. 

 

7.2 Fixed-size training data set 

 

The approach we propose is to assemble a data set of a predefined size. The data set 

is then to be used to pre-train the ANN. After that, the ANN is ready to make predictions. 

To account for nonstationary time series, we keep the initial data set and fix its size. Then every 

time a new observation is made, we present it to the forecaster which uses it to compute a new 

input-output pair, which is then inserted into the training data set we keep. It is obvious that in 

order to keep the size of the data set fixed, we have to delete one existing input-output pair for 

every new entry. 

This approach is inspired by the so-called On-the-fly training method proposed 

by Pomerleau in [23]. Pomerleau uses the principle to train a controller for autonomous control 

of a vehicle – in his work the new data replaces such entries in the training data set, for which 

the ANN has the smallest error, that is, such entries that the ANN has already learned. After 

that, a single forward-backward run is performed. That is to say, a single epoch of training 

is performed in which every input-output pair is presented to the network exactly once.  

Our own work, on the other hand, seems to suggest that such approach does not apply 

very well to forecasting. Our results show that the accuracy of the forecaster decreases 

drastically when such mechanism is in place. We have therefore, after conducting several 

experiments, decided to choose the entry that is to be replaced randomly. As shown in the 

following section, the behaviour is much improved in such case. 

It is also possible to set the fixed size parameter to a value different from the size of the 
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initial training data set. In such case some elements are erased from the initial data set after the 

initial training if the fixed size parameter is smaller than the size of the initial training data set. 

If, on the other hand, the fixed size parameter is greater, new input-output pairs are added 

to the data set without replacing the old ones until this fixed size is reached. In the 

experimental results, unless explicitly specified, the fixed size of the data set is the same as the 

size of the initial training data set. 

There is another notion that requires discussion – how often the network should be trained 

and how many training epochs should be performed. In relation to this, let us now introduce the 

concept that we term the observation batch number. It has the form of es : , where s  is the 

size of the observation batch – the training is only performed every s  observations with the 

maximum number of training epochs set to e . Several settings of the observation batch number 

are explored in the following section and the results are presented there as well. 

 

 

8. EXPERIMENTAL RESULTS 
 

Let us now present experimental results. Unless explicitly stated otherwise, these are all 

based on 2 observation sequences (denoted as case1 and case2) generated by the simulation 

model described in section 4. For case 2, several parameters have been modified and thus both 

sequences exhibit significantly different behaviour. These cases will be used to evaluate the 

algorithm's ability to adapt in nonstationary prediction tasks using dynamic training with fixed-

size training data set. As mentioned, these experiments are carried out using an environment 

with the number of rooms equal to 14 – therefore the total of 4 bits is sufficient to represent all 

rooms. The order of the forecaster is 6 (we present the network with six previous values and 

the current one). 

 

8.1 Accuracy over time 

 

As to evaluation of accuracy – the forecaster is presented with an observation sequence 

in every time step and predicts the following observation. The time steps are divided into 

windows of predefined size. The accuracy measure shown in the chart is then calculated 

for each window as follows: 

wc nn=a / , (2) 

where 
wn  is the size of the window of time steps over which the accuracy is computed and 

cn  

is the number of correct predictions. Thus the accuracy is the number of correct predictions 

over the number of time steps, that is, over the total number of predictions in that window. 

The number of windows is fixed to 75 so that the resulting charts can be compared with ease. 

Thus, size of window 
wn  may differ from one observation sequence to another. 

Fig. 4 shows charts of accuracy over time with static training only for case1 and case2. 

Note that the forecaster is only trained statically for case1 and then tested on both case1 

and case2. This data provides further evidence that dynamic training is vital when forecasting 

nonstationary time series. Accuracy evaluated over the entire run is 0.771862 for case1 

and 0.364431 for case2. 

When using both static training and dynamic training on a fixed-size training data set, the 

resulting accuracy is as shown in Fig. 5 and Fig. 6. Each of these figures is evaluated 

for a different observation batch number. 



43 

As we can see, the difference between observation batch number 5:3 (Fig. 5) and 10:3 

(Fig. 6) is not that noticeable. There is of course the fact that it may take longer to react when 

adaptation is only done every 10 observations, but, on the other hand, this seems to help 

to decrease the effect of various anomalies such as that just before the end of case1 – as we can 

see, accuracy of 5:3 drops drastically at this point – it actually goes below 0.5, while in 10:3 

this effect is less noticeable. 
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Fig. 4. Accuracy over time when using static training only 
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Fig. 5. Accuracy over time with static and dynamic training; 5:3 
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Fig. 6. Accuracy over time with static and dynamic training; 10:3 
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8.2 Accuracy over the entire run 

 

Let us also present a table of accuracy computed over the entire run (Table 1). It also 

shows the margin between the results achieved by our method and those achieved by selecting 

a random room while respecting the physical possibilities set out in Fig. 1. The accuracy shown 

is the average over 50 runs of the algorithm. 

 

Table 1. Accuracy over the entire run 

Method / 

Case 

Random 

selection 

On-the-fly 

learning 
Static training 

Dynamic 

training, 

5:3 

Dynamic 

training, 

10:3 

Case1 
0.51 

0.549301 0.725239 0.764755 0.762407 

Case 2 0.370096 0.38286 0.790061 0.784424 

 

As we can see, the results are slightly better for case2, not for case1 on portion of which 

re-training was done. This is due to the statistical character of the series and similar behaviour 

would occur if we pre-trained using portion of case2. However, this shows that the online 

adaptation based on the proposed method of dynamic training is effective. 

 

 

9. CONCLUSION 
 

A dynamic learning method for artificial neural networks based on the so-called on-the-fly 

training has been presented and its features and merits have been discussed in some detail. 

The experimental data clearly show that the approach is effective and that it can be used 

to provide an artificial neural network with dynamic learning thus providing for online 

adaptation capabilities. It has been shown how such approach can be applied to the problem 

of person movement prediction. Both accuracy and dynamic properties of the solution have 

been investigated and the corresponding experimental results provided.  

Concerning future research a more detailed model with more zones should be created 

so as to investigate scalability of the solution, preferably in comparison to other related 

methods. In addition, it would also seem appropriate to extend the model so as to accommodate 

time in a more precise and expressive manner. 

Application of this algorithm to an extended model with multiple zones per room (with 

every zone being linked to a given function of the room – e.g. kitchen could be divided into 4 

zones: surroundings of the fridge, kitchen sideboard, middle zone and entering/leaving zone) 

should also provide interesting results. 

It would also be necessary to provide further testing of the algorithm on other data, 

preferably on data collected in a real environment such as the Augsburg Indoor Location 

Tracking Benchmarks mentioned in [6]. 
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